metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

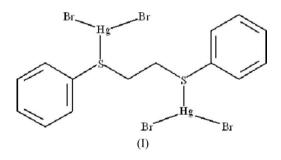
Jun-Bo Gong, Li-Na Zhou* and Wei Chen

The State Research Center of Industrialization for, Crystallization Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: linazhou@tju.edu.cn

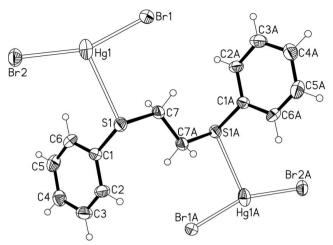
Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.011 Å R factor = 0.037 wR factor = 0.098 Data-to-parameter ratio = 19.7

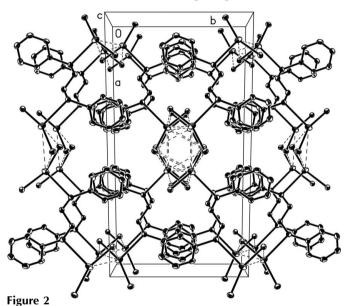

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[μ -1,2-Bis(phenylsulfanyl)ethane- κ^2 S:S']-bis[dibromomercury(II)]

The title complex, $[Hg_2Br_4(C_{14}H_{14}S_2)]$, has a dinuclear structure with one 1,2-bis(phenylsulfanyl)ethane ligand linking two HgBr₂ units, in which the Hg^{II} center adopts a near T-shape coordination geometry formed by two Br⁻ anions and one S atom of 1,2-bis(phenylsulfanyl)ethane. There is a crystallographic inversion center at the mid-point of the central C-C bond. In the crystal structure, when the Hg-Br weak interactions are considered, the dinuclear structure expands into a three-dimensional framework.


Comment

Recently, the crystal structures of two Hg^{II} complexes with flexible dithioether ligands, 1,4-bis(ethylsulfanyl)butane (Liu *et al.*, 2005) and 1,4-bis(benzylsulfanyl)butane (Che *et al.*, 2005), have been reported. These two complexes contain different structural features, *viz*. pseudo-two-dimensional layers and one-dimensional chains, and the two Br⁻ anions around each Hg^{II} center in the two complexes have different coordination modes, *viz*. both μ_2 -bridging, with one monoterminal and one μ_2 -bridging. Even so, there have been fewer structural investigations of Hg^{II}–dithioether complexes than those of Ag^I complexes (Bu *et al.*, 2002; Li *et al.*, 2005). We report here a dinuclear Hg^{II} complex, [(HgBr₂)₂L], (I), with a 1,2-bis(phenylsulfanyl)ethane (L) ligand.


As shown in Fig. 1, the title complex, (I), has a centrosymmetric dinuclear structure which is formed by one *L* ligand linking two HgBr₂ units with an inversion center located at the mid-point of the central C–C bond. Each Hg^{II} ion is coordinated by two Br⁻ anions and one S atom of ligand *L*, showing a near T-shape geometry, as exhibited by the relevant bond angles listed in Table 1. The Hg^{II} ion deviates from the coordination plane (Br1/Br2/S1) by 0.0314 (7) Å. In the ligand *L*, the C and S atoms between the two terminal phenyl groups are coplanar, and form a dihedral angle of 100.8 (7)° with the phenyl plane, and 150.5 (8)° with the coordination plane mentioned above. In (I), the *L*-bridged Hg····Hg distance is 8.777 (8) Å, and the S···S distance within one *L* is 4.431 (7) Å.

© 2006 International Union of Crystallography All rights reserved Received 1 December 2005 Accepted 23 January 2006

Figure 1

The structure of (I), showing displacement ellipsoids drawn at the 40% probability level [symmetry code: (A) $-\frac{1}{2} - x, \frac{1}{2} - y, -1 - z$].

Three-dimensional framework structure of (I). Dashed lines indicate weak interactions. H atoms have been omitted.

It should be noted that in the crystal structure of (I), such dinuclear molecules are further linked by Br...Hg weak interactions to form a three-dimensional framework (Fig. 2), with Br···Hg distances in the range 3.263(7)–3.576(8) Å. Simultaneously, there also exist weak π - π interactions between phenyl groups of adjacent dinuclear molecules with a $Cg \cdots Cg^{i}$ distance of 4.041 (6) Å, $Cg \cdots$ perp distances of 3.596 (7) and 3.570 (7) Å, and a dihedral angle of $9.39 (7)^{\circ}$ [perp = perpendicular; symmetry code: (i) x, 1 - y, $-\frac{1}{2} + z$].

Experimental

1,2-Bis(phenylsulfanyl)ethane (L) was synthesized via the literature method of Hartley et al. (1979). To a solution of L (50 mg, 0.2 mmol) in chloroform (10 ml) was added a solution of HgBr₂ (72 mg, 0.2 mmol) in acetone (10 ml). The mixture was filtered and left to stand at room temperature. Colorless single crystals suitable for X-ray investigation were collected after two weeks (yield: 60%).

Crystal data

5	
$[Hg_2Br_4(C_{14}H_{14}S_2)]$ $M_r = 967.20$ Monoclinic, $C2/c$ a = 22.0328 (13) Å b = 11.6648 (7) Å c = 8.0759 (4) Å $\beta = 103.313$ (4)° V = 2019.8 (2) Å ³ Z = 4	$D_x = 3.181 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 3720 reflections $\theta = 2.8-27.3^{\circ}$ $\mu = 23.30 \text{ mm}^{-1}$ T = 293 (2) K Block, colorless $0.18 \times 0.16 \times 0.16 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 1998) $T_{\min} = 0.284, T_{\max} = 1.000$ 8500 measured reflections	1987 independent reflections 1772 reflections with $I > 2\sigma(I)$ $R_{int} = 0.049$ $\theta_{max} = 26.0^{\circ}$ $h = -27 \rightarrow 27$ $k = -14 \rightarrow 11$ $l = -9 \rightarrow 9$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0351P)^2$

Refinement on F ²	$w = 1/[\sigma^2(F_0^2) + (0.0351P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.037$	+ 9.9952P]
$wR(F^2) = 0.098$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.07	$(\Delta/\sigma)_{\rm max} = 0.001$
1987 reflections	$\Delta \rho_{\rm max} = 2.52 \ {\rm e} \ {\rm \AA}^{-3}$
101 parameters	$\Delta \rho_{\rm min} = -1.62 \ {\rm e} \ {\rm \AA}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97
	Extinction coefficient: 0.00211 (15)

Table 1

Selected geometric parameters (Å, °).

Hg1-Br2	2.4404 (8)	Hg1-S1	2.8963 (17)
Hg1-Br1	2.4592 (7)		
Br2-Hg1-Br1	158.41 (3)	C1-S1-C7	101.7 (3)
Br1-Hg1-S1	94.05 (4)	C1-S1-Hg1	114.4 (2)
Br2-Hg1-S1	107.47 (4)	C7-S1-Hg1	99.4 (2)

H atoms were included in calculated positions and treated in the subsequent refinement as riding atoms, with C-H = 0.93 or 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The highest density peak and deepest hole in the final difference map were located 0.89 and 0.77 Å, respectively, from atom Hg1.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT and SHELXTL (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL.

The authors thank Tianjin University for supporting this work.

References

- Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bu, X.-H., Chen, W., Hou, W.-F., Du, M., Zhang, R.-H. & Brisse, F. (2002). Inorg. Chem. 41, 3477-3482.
- Che, G.-B., Liu, C.-B., Cui, Y.-C. & Li, C.-B. (2005). Acta Cryst. E61, m2704m2705
- Hartley, F. R., Murray, S. G., Levason, W., Soutter, H. E. & McAuliffe, C. A. (1979). Inorg. Chim. Acta, 35, 265-277.
- Li, J.-R., Bu, X.-H., Jiao, J., Du, W.-P., Xu, X.-H. & Zhang, R.-H. (2005). J. Chem. Soc. Dalton Trans. pp. 464-474.
- Liu, C.-B., Che, G.-B., Cui, Y.-C. & Li, C.-B. (2005). Acta Cryst. E61, m2469m2470
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany,